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Abstract
This paper investigates a three-dimensional periodic tube driven by spatially
modulated Gaussian white noise. We derive an analytical expression for the net
current by introducing entropic barriers. It is found that the phase shift between
the entirely symmetric tube and noise modulation can break the symmetry of the
generalized potential and induce directed transport. The sign of the current is
determined by the phase shift. The current is a peaked function of the bottleneck
radius. The interplay between the asymmetric tube and noise modulation can
also induce a net current.

1. Introduction

Brownian motion in periodic structures can describe diverse process in many different branches
of science. There has been an increasing interest in the transport properties of nonlinear
systems which can extract usable work from unbiased nonequilibrium fluctuations [1–4]. This
comes from the desire to understand molecular motors [5], nanoscale friction [6], surface
smoothing [7], coupled Josephson junctions [8], optical ratchets and directed motion of laser
cooled atoms [9] and mass separation and trapping schemes at the microscale [10].

The focus of research has been on noise-induced unidirectional motion. The directed
Brownian motion of particles is generated by nonequilibrium noise in the absence of any net
macroscopic forces and potential gradients. Diffusive motion with a state-dependent noise
plays an important role in many physical systems [11]. Some examples are: nonlinear self-
excited oscillators in the presence of noise, diodes, current instabilities in bulk semiconductors
and in ballast resistors. State-dependent noise can break the symmetry of the generalized
potential and induce a net current [12]. A bias in the generalized potential can be induced
by asymmetry of the energy potential and noise modulation [13] or by a phase shift between
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Figure 1. Schematic diagram of a tube with periodicity 2π . The shape is described by the radius of
the tube ω(x) = a[1 − cos(x)] + b.

an entirely symmetric potential and noise modulation [11]. An additive temporal–spatial noise
can also produce a nonzero net current even when the potential is symmetric [14].

Previous studies on state-dependent noises have considered the energy barrier. The nature
of the barrier depends on which thermodynamic potential varies when passing from one well to
the other, and the presence of a barrier plays an important role in the dynamics of the solid state
physics system. However, in some cases, such as soft condensed matter and biological systems,
entropy barriers should be considered. Entropy barriers may appear when coarsening the
description of a complex system to simplify its dynamics. Reguera and co-workers [15] used
the mesoscopic nonequilibrium thermodynamics theory to derive the general kinetic equation
of a system and analyse in detail the case of diffusion in a domain of irregular geometry in which
the presence of the boundaries induces an entropy barrier when approaching the dynamics by
a coarsening of the description. In the presence of entropic barriers, the asymmetry of the tube
can induce a net current in the absence of any net macroscopic forces or in the presence of
unbiased forces [16].

Previous works on state-dependent noise considered the energy barriers. The present
work is extended to the study of entropic barriers. Our emphasis is on finding how the phase
shift between the entirely symmetric tube and noise modulation or the interplay between the
asymmetric tube and noise modulation can induce a net current.

2. Noise-induced current in a periodic tube

Consider Brownian particles in a symmetric periodic tube (figure 1) subject to a spatially
modulated Gaussian white noise. The stochastic dynamics is governed by the three-
dimensional (3D) Langevin equations in a dimensionless form [15, 16]:

η
dx

dt
= g(x)

√
ηkBT ξx (t), (1)

η
dy

dt
= √

ηkBT ξy(t), (2)

η
dz

dt
= √

ηkBT ξz(t), (3)

where x , y, z are coordinates, T the temperature, kB the Boltzmann constant and η the friction
coefficient of the particle. ξx,y,z(t) is Gaussian white noise with zero mean and correlation
function 〈ξi (t)ξ j (t ′)〉 = 2δi, jδ(t − t ′) for i, j = x, y, z. 〈· · ·〉 denotes an ensemble average
over the distribution of noise. δ(t) is the Dirac delta function. Imposing reflecting boundary
conditions in the transverse direction ensures the confinement of the dynamics within the tube,
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while the periodic boundary conditions are enforced along the longitudinal direction. The tube
shape is described by its radius

ω(x) = a(1 − cos x) + b, (4)

where a is the parameter that controls the height of the tube and b is the radius at the bottleneck.
g(x) is the non-negative noise modulation with the same period as ω(x),

g(x) = 1√
1 − α cos(x − φ)

, (5)

where φ is phase shift between the noise modulation and the tube shape and α is the noise
modulation amplitude. Since g(x) > 0 the amplitude α is restricted to the range 0 � α < 1.

The movement equation of Brownian particles moving along the axis of the 3D tube can be
described by the Fick–Jacobs equation [15–17] which is derived from the 3D Smoluchowski
equation after elimination of y and z coordinates by assuming equilibrium in the orthogonal
directions. The reduction of the coordinates may involve not only the appearance of an entropic
barrier but also the effective diffusion coefficient. When |ω′(x)| � 1, the effective diffusion
coefficient reads [15]

D(x) = D0

[1 + ω′(x)2]γ , (6)

where D0 = kBT/η and γ = 1/2 for 3D. The prime stands for the derivative with respect to
the space variable x .

Consider the effective diffusion coefficient, the entropic barrier and a spatially modulated
Gaussian white noise: the effective one-dimensional Langevin equation with the friction
coefficient η(x) = kBT

D(x)
reads in the Stratonovich prescription,

dx

dt
= − A′(x)

η(x)
− 1

2
kBT g2(x)

η′(x)

η2(x)
+ g(x)

√
kBT

η(x)
ξx(t), (7)

where we define a free energy A(x) := −T S = −T kB ln h(x), S = kB ln h(x) the entropy,
h(x) the dimensionless transverse cross section π[ω(x)/2π]2 of the tube in 3D. It should be
noted that the above equation involves a multiplicative noise with an additional temperature-
dependent drift term (− 1

2 kBT g2(x) η′(x)

η2(x)
) [18]. The additional term turns out to be essential

in order for the system to approach the correct thermal equilibrium state. The motion is
equivalently described by the Fokker–Planck equation [11–16],

∂ P(x, t)

∂ t
= ∂

∂x

[
D(x)g2(x)

∂ P(x, t)

∂x
+ D(x)

kBT

∂ A(x)

∂x
P(x, t) + D(x)g′(x)g(x)P(x, t)

]
,

(8)

where P(x, t) is the probability density for the particle at position x and at time t .
The stationary current J is determined by

J = −D(x)g2(x)
∂ Pst(x)

∂x
− D(x)

kBT

∂ A(x)

∂x
Pst(x) − D(x)g′(x)g(x)Pst(x), (9)

where Pst(x) is the steady probability density and satisfies the normalization condition∫ 2π

0 Pst(x) dx = 1 and the periodicity condition Pst(x) = Pst(x + 2π). These lead to the
general current formula [11–16],

J = 1 − exp( �
kBT )

∫ 2π

0 g−1(x) exp[−�(x)

kB T ] dx
∫ x+2π

x D−1(y)g−1(y) exp[�(y)

kB T ] dx
, (10)
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Figure 2. Free energy A(x), noise modulation g(x) and generalized potential �(x) as a function
of x at a = 1/2π , b = 0.5/2π , kBT = 0.5, α = 0.95 and φ = 5.

where �(x) and � are generalized potential and its slope from one periodicity, respectively:

�(x) =
∫ x

0

A′(x)

g2(x)
dx, (11)

� = �(2π) = 4πkBT α sin φ

a
(a + b −

√
2ab + b2). (12)

The denominator of equation (9) is always positive, so the sign of J is determined by �.
From equation (11), we can know that the sign of J is changed as periodic function of φ. It
should be noted that the current will vanish when the amplitude of the spatial modulation α

tends to zero. In this case, the multiplicative noise in the tube reduces to an additive noise and
no current occurs.

3. Results and discussions

Figure 2 shows free energy A(x), noise modulation g(x) and generalized potential �(x) as a
function of x at α = 0.95 and φ = 5.0. A phase shift between an entirely symmetric tube and
noise modulation leads to a finite bias in the generalized potential equation (10). The physical
origin of this bias is that a high noise intensity at one slope of free energy causes a higher escape
probability compared to that at opposite slope. In figure 2, we use φ = 5.0 and there is a bias
in the generalized potential. Brownian particles in this case will go to the right on average.

Figure 3 shows the noise-induced current J as a function of α for φ = 5.0. Figure 3 has
been obtained from equation (9). When α = 0, the noise modulation is a constant and the
generalized potential is a periodic function, so the current goes to zero. The current increases
with the noise modulation amplitude α.

Figure 4 shows the current J versus the bottleneck radius b for φ = 5 and α = 0.95. If
the bottleneck is zero, the particle cannot pass through it, so the current tends to zero. When
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Figure 3. Current J versus noise modulation amplitude α at a = 1/2π , b = 0.5/2π , kBT = 0.5
and φ = 5.
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Figure 4. Current J as a function of the bottleneck radius b at a = 1/2π , kBT = 0.5, α = 0.95
and φ = 5.

the radius at the bottleneck is infinite, the tube effect disappears and the current tends to zero,
also. Therefore, there exists an optimized radius at which the current takes its maximum value.
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Figure 5. Current J as a function of the phase shift φ between the entirely symmetric tube shape
and noise modulation at a = 1/2π , b = 0.5/2π , kBT = 0.5, and α = 0.95.

Figure 5 shows the current J as a function of phase φ. The figure is obtained by using
equations (9)–(11). It is easy to obtain that the sign of the current is determined by φ. The
phase φ plays an important role in obtaining a net current. If φ is a multiple of π the state-
dependent noise only causes a redistribution of particles which is periodic with period 2π . If
the phase φ is not a multiple of π then the noise intensity is asymmetric with regard to the local
maximum of free energy. From equations (9)–(11), we can know that the current is a periodic
function of φ with the period 2π . The current goes to zero at φ = 0, π and 2π . The current is
negative for 0 < φ < π and positive for π < φ < 2φ.

Noise-induce transport occurs if and only if the generalized potential �(x) is not a periodic
function [12], i.e. �(2π) �= �(0). A phase shift between the entirely symmetric tube and noise
modulation can break the symmetry of the generalized potential. Similarly, the asymmetry of
the tube and noise modulation can also induce a finite bias in the generalized potential. For
example, we can consider the tube shape as asymmetric:

ω(x) = a

[
sin(x) + �

4
sin(2x)

]
+ b, (13)

where � is the asymmetric parameter of the tube shape. The non-negative noise modulation is
g(x),

g(x) = 1√
1 − α sin x

, (14)

where α is the noise modulation amplitude. The generalized potential �(x) is shown in
figure 6. It is found that the asymmetric tube (� = −2 and 2) and noise modulation
(equations (13) and (14)) can break the symmetry of the generalized potential. However, the
generalized potential is still symmetric for a symmetric tube (� = 0) and noise modulation.
Thus, the interplay between an asymmetric tube and noise modulation can also induce a net
current.
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Figure 6. Generalized potential �(x) as a function of x at a = 1/2π , b = 1.5/2π , kBT = 1,
α = 0.95 for different values of the asymmetric parameter � = −2, 0, 2, respectively.

4. Concluding remarks

In this paper we consider Brownian particles moving in a 3D periodic tube subject to a spatially
modulated Gaussian white noise. The reduction of the coordinates may involve not only
the appearance of entropic barriers but also the efficient diffusion coefficient. We derive an
analytical expression for noise-induced current by introducing entropic barriers. The phase
shift between an entirely symmetric tube and noise modulation can induce a finite bias in
the generalized potential. The physical origin of the net current is that the noise intensity is
asymmetric with regard to the local maximum of free energy. Each local free energy hill has
a slope with high-intensity noise (hot slope) and a slope with low-intensity noise (cold slope).
Net current occurs because Brownian particles starting from the valley can climb the hot slope
more easily than they can climb the cold slope. There exists an optimized radius at which the
current takes its maximum value which is similar to that of the unbiased forced-driving periodic
tube [16]. The phase φ plays a very important role in obtaining a net current. The sign of the
current is determined by the phase φ. The current is a periodic function of φ with the period
2π . In a period, the current is negative for 0 < φ < π and positive for π < φ < 2π . It
is also found that the asymmetric tube and noise modulation can break the symmetry of the
generalized potential and induce directed transport.
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